
Automatic Question Pattern Generation for Ontology-based Question

Answering

Shiyan Ou, Constantin Orasan, Dalila Mekhaldi, Laura Hasler

Research Group in Computational Linguistics

University of Wolverhampton, UK

{shiyan.ou, c.orasan, dalila.mekhaldi, l. hasler}@wlv.ac.uk

Abstract

This paper presents an automatic question pattern generation
method for ontology-based question answering with the use
of textual entailment. In this method, a set of question pat-
terns, called predictive questions, which are predicted to be
asked by users in a domain, were generated on the basis of a
domain ontology. Their corresponding query templates,
which can be used to extract answers to the predictive ques-
tions from a knowledge base, were generated as well. The
process of producing these question patterns and query tem-
plates is described and discussed in the context of the
“Movies & Cinemas” domain. An evaluation was carried
out to assess the quality of the generated question patterns
with the help of a textual entailment engine.

1. Introduction

The semantic web, which encodes some semantics of web-

resources in a machine-readable form, is regarded as the

future in the evolution of the World Wide Web. It offers an

opportunity to develop novel, sophisticated forms of

Question Answering (QA), where ontologies play a crucial

role (Lopez et al. 2005). The common feature of such

ontology-based QA systems is that they require the repre-

sentation of both natural language user questions and in-

formation sources using formats compliant with a common

ontology (Basili et al. 2004). Once unstructured informa-

tion sources are marked up semantically and transformed

into structured knowledge bases, well-structured queries,

often written in a certain standard query language (e.g.

SQL, SPARQL, and RQL), are often used to retrieve data

from underlying knowledge bases. In order to draw correct

answers from such sources, a natural language question

needs to be precisely translated into such a query. How-

ever, this is a difficult task involving complex semantic

annotation and knowledge representation. In addition to

this, language is complex and ambiguous, and the same

question can be asked using various expressions, for ex-

ample, “Where can I see movie X?”, “Which cinema is

Copyright © 2008, Association for the Advancement of Artificial

Intelligence (www.aaai.org). All rights reserved.

showing movie X?” and “What is the name of the cinema

which is showing movie X?”. These “different” questions

share the same query for data retrieval and obtain the same

answers, and thus it is not worth processing each expres-

sion to produce the same query. To address this problem,

textual entailment was proposed as a solution to determine

whether different expressions entail the same meaning and

thus can use the same retrieval procedure (Kouylekov et al.

2006).

In our EU-funded project QALL-ME1, which aims to

establish a shared infrastructure for multilingual and mul-

timodal QA in the tourism domain, we proposed an

ontology-based QA method which uses a set of predefined

question patterns for answering new questions with the use

of textual entailment. In this project, a domain ontology

was designed to provide a common vocabulary for the se-

lected domain as well as a computerized specification of

the meaning of terms used in the vocabulary. The unstruc-

tured tourism data taken from the web were semantically

marked up using the ontology and converted into the triple-

based RDF format. On the basis of the ontology, a set of

question patterns, called predictive questions, which are

predicted to be asked by users in the domain, were gener-

ated automatically, along with their corresponding query

templates. Following Harabagiu and Hickl (2006), if a user

question entails a predictive question, the answers of the

predictive question are expected to be some subset of the

answers to the user question. Thus for an input user ques-

tion, we use textual entailment to discover the predictive

question entailed by it, and then use the query template of

the selected predictive question to produce a complete

query for retrieving the answers to the user question. The

main advantage of the method proposed is that we do not

need to annotate the user questions which look different

but entail the same meaning, and more precise queries can

be created to retrieve correct answers without the need of

deep question processing.

1 http://qallme.fbk.eu

183

Proceedings of the Twenty-First International FLAIRS Conference (2008)

This paper focuses on the automatic generation of question

patterns as well as their corresponding query templates on

the basis of the domain ontology. An evaluation was car-

ried out to assess the quality of the generated question pat-

terns by using a textual entailment engine to find out the

one entailed by a user question. The subsequent sections

are organized as follows: Section 2 reviews some related

question answering systems, Section 3 describes the do-

main ontology and the underlying ontological knowledge

base, Section 4 describes the generation of predictive

questions and their corresponding query templates, Section

5 reports the evaluation and its results, and Section 6 pre-

sents the discussion and conclusion.

2. Related Work

In question answering, the issue of representing a natural
language question as a structured format for data retrieval
is not a trivial task. Work in this area can be traced back to
the early database-based QA systems. Using linguistic
processing, Chat-80 (Warren and Pereira 1982) transforms
a natural language question into a ProLog query, whereas
RECISE (Popescu et al. 2003) maps a question to an SQL
query. In the open-domain QA system START (Katz et al.
2002), a natural language question was translated into a
database query in the form of <object property value>,
where the value of the object’s property represents the ex-
pected answer to the question. For example, the question
“Who directed Gone with the wind?” is represented as
<‘imdb.movie’ ‘Gone with wind (1939)’ ‘DIRECTOR’>.

The availability of domain ontologies makes possible to
semantically annotate questions and transform them into an
ontological representation. An early ontology-based ques-
tion analysis was investigated in the EU project MOSES
(Atzeni et al. 2004). In this QA system, a natural language
question is first represented as a Question Quasi-Logical
(Q-QLF) form with syntactic analysis. Then, a domain
ontology, which has been mapped to a general linguistic
resource (e.g. EuroWordNet), is used to map the Q-QLF
form into an ontology-based concept-relation form for data
retrieval from the semantically structured web contents.
Another ontology-driven QA system, Aqualog (Lopez et
al. 2005), makes use of linguistic tools (e.g. GATE) and
resources (e.g. WordNet) to annotate the terms and rela-
tions in a natural language question and then translates the
question into a set of <subject, predicate, object> triples.
These intermediate triples are further processed to produce
ontology-compliant logical queries for drawing the an-
swers from a knowledge base with ontology-compliant
semantic markup. The third demonstration system which
uses ontology-based full knowledge representation to an-
swer questions is the KSL Wine Agent2. This web service
poses a structured query expressed in OWL DL to the
knowledge base which contains structured content infor-

2 http://ksl.stanford.edu/people/dlm/webont/wineAgent/

mation, and uses a reasoner to check whether the content
matches the query. A representative question which can be
answered by the system is “What kind of wine should I
serve with a meal whose main course is pasta with spicy
red sauce?”

A typical example of using predefined questions and tex-
tual entailment in QA is described in Harabagiu and Hickl
(2006). First, the search engine of their QA system re-
turned a set of ranked passages in response to a user ques-
tion. To extract correct answers from these passages, a set
of possible questions with the associated answers was gen-
erated automatically from the top-ranked passage. Using
textual entailment, the predictive questions which were
entailed by the user question were recognized and their
answers were used as the correct answers to the user ques-
tion. Our work is similar to that of Harabagiu and Hickl
(2006). However, in contrast to their work, (1) we gener-
ated question patterns and the associated query templates
rather than concrete questions and the associated answers;
(2) we generated predefined questions based on a domain
ontology instead of the passages which were expected to
contain the answers; and (3) our work was used for re-
stricted-domain QA whereas their work was for open-
domain QA.

3. Ontology and Ontological Knowledge Base

The ontology designed in our project aims at providing a
conceptualized description of the tourism domain. It
mainly covers tourism sites and tourism events in certain
destinations (cities or towns). The ontology was encoded
using the OWL DL language. A representative part of the
ontology is the sub-domain of “Movies & Cinemas”,
shown in Figure 1. It involves a type of tourism site,
Cinema, and a type of tourism event, MovieShow, and fo-
cuses on the relationships between them.

From the point of view of design, the top-level classes fall
into three categories:

• Main classes refer to the most important concepts in
the tourism domain, e.g. Site, Event and EventContent.

• Element classes refer to the elements of the main
classes or the elements of other element classes, e.g.
Room (including CinemaRoom, GuestRoom etc.),
Facility (including SiteFacility and RoomFacility),
PersonOrganization (including Star, Director etc.).

• Attribute classes refer to the packages of a group of
attributes of the main classes or element classes, e.g.
Contact, Period, Price and Location (including
GPSCoordinate, PostalAddress, DirectionLocation).

From an application perspective, the instances of the main
classes can exist independently whereas the instances of
the element classes and attribute classes have to be at-
tached to the instances of the main classes or other element
classes.

184

• The ellipse boxes represent classes and the rectangular represent literals; the top-level classes are highlighted in bold.

• The solid lines represent object properties and datatype properties, and the dotted lines represent subClassOf.

Figure 1. A part of the tourism ontology on the sub-domain of “Movies & Cinemas”

To construct a knowledge base for providing potential an-
swers to user questions, we annotated the original tourism
data obtained from the web using semantic markup derived
from the designed OWL ontology. The tourism data were
encoded in the RDF/XML format, which can be used to
instantiate the ontology. The RDF/XML documents were
persistently stored in the MySQL relational database as an
RDF data model in the triple form of <subject, predicate,
object>. To access the RDF-based knowledge base, RDF
query languages, such as SPARQL and RQL, need to be
used to retrieve specific contents from it for QA. This pro-
cedure can be viewed as an extension of pattern matching.

4. Automatic Generation of Predictive

Questions with Query Templates

In this section, we focus on how to generate natural lan-
guage predictive questions which can be asked and an-
swered based on a domain ontology. Although this paper
focuses on the sub-domain of “Movies & Cinemas”, the

method can be generalized for the whole tourism domain.
In addition, we use the SPARQL query language as the
example to show how to generate corresponding query
templates for retrieving answers to these predictive ques-
tions. Templates using other query languages can be gen-
erated in a similar way.

Like the RDF model, SPARQL is also built on triple
patterns and is written in the form of a subject, predicate
and object, but must be terminated with a full stop. In a
SPARQL triple pattern, any of the subject, predicate, and
object values may be replaced by a variable that is denoted
using a question mark (e.g. ?directorName). Variables are
used to indicate data items of interest that will be requested
by a question (for more details about SPARQL, please see
http://www.w3.org/TR/rdf-sparql-query/)

In the OWL ontology, a class usually has a list of associ-
ated properties which can be applied to the instances of the
class. The value range of the property is usually specified
by the global range restriction <rdfs: range>, but it may be

185

narrowed by the local range restriction <owl:
allValuesFrom> with respect to a particular class. A class,
an associated property, and the range of the property on the
class can be written in the form of the RDF triple, i.e. a 3-
tuple of subject, predicate and object, where the subject
represents the class, the predicate represents the property,
and the object represents the value range of the property,
for example, <MovieShow, isInSite, Cinema>. If the range
is a union class containing more than one named classes,
each of these classes is regarded as an object for creating a
triple, e.g. <MovieShow, hasPeriod, DateTimePeriod> +
<MovieShow, hasPeriod, DatePeriod>.

Since the element and attribute classes need to be attached
to the main classes, we started from the main classes to
create predictive questions and query templates. For a main
class, we used Jena3, a Semantic Framework for Java, to
parse the OWL ontology and derived all the properties
associated with it to write each in the triple form: <class,
property, range>. These associated properties represent all
the possible items which can be queried for the instances in
the class. Among these properties, we first located the one
which is the most frequently asked by users. By analyzing
100 randomly selected user questions, we found that for
most of the main classes (e.g. Movie and Cinema) the
property is ‘name’. Thus, for the instances in such main
classes, we create two types of queries focusing on the
‘name’ property:

• T1: Query the ‘name’ property of a class instance using
one or more of its other properties as the constraint(s). If
only one property ‘xxx’ is taken, the one-constraint tem-
plate is defined as follows:
− What is the name of the <class> which has the

<xxx> [<xxx>_value]?

• T2: Query a property ‘xxx’ (different to ‘name’) of a
class instance using its ‘name’ property as the constraint.
The T2 template is defined as follows:
− What (or When, Where, How long) is the <xxx> of

[<class>_name]?

In the above templates, the angle-brackets slots represent
the names of the classes or properties which will be filled
while producing predictive questions. The square-brackets
slots represent the name of the entities (e.g. movie genre,
movie name) defined in the domain ontology, which will
be filled with the real values in a user question while pro-
ducing its complete SPARQL query.

If the property ‘xxx’ is a datatype property (e.g. genre), its
range is a literal (e.g. string). For each type of query with
one constraint, one natural language predictive question is
produced. At the same time, its query template is generated
based on the two triples: <class, name, string> and <class,
xxx, range>. For example, if class=‘Movie’, xxx=‘genre’,
the following two predictive questions are generated based
on the above templates, along with the corresponding
SPARQL query templates.

3 http://jena.sourceforge.net

T1-1: What is the name of the movie which has the genre
[genre_value]?

SELECT ?movieName

WHERE {

?Movie prefix:name ?movieName.

?Movie prefix:genre “[genre_value]”^^<xsd:string>. }

T2-1: What is the genre of [Movie_name]?

SELECT ?genreValue

WHERE {

?Movie prefix:name “[Movie_name]”^^<xsd:string>.

?Movie prefix:genre ?genreValue. }

If the property ‘xxx’ is an object property (e.g.
hasPostalAddress), its range is a class (e.g.
PostalAddress). Then the triples associated with this class
are created subsequently using Jena. The procedure is re-
peated until the objects in all the triples are literals. Each of
the triples will be used to create a SPARQL triple pattern.
For example,

<Cinema, name, string>

<Cinema, hasPostalAddress, PostalAddress> →

 <PostalAddress, street, string>

 <PostalAddress, postalCode, string>

 <PostalAddress, isInDestination, Destination> →

 <Destination, name, string>

For the first type of queries, T1, three predictive questions
can be produced, each of which uses one of the properties
associated with the range class as the constraint.

T1-2: What is the name of the cinema which is in
[street_value]?

T1-3: What is the name of the cinema which has the postal
code [postalCode_value]?

T1-4: What is the name of the cinema which is in
[Destination_name]?

For the second type of queries, T2, four predictive ques-
tions can be produced as follows. Each of the first three
questions queries one of the properties associated with the
range class, and the last one queries the overall range class
(i.e. all of its associated properties).

T2-2: What is the street of [Cinema_name]?
T2-3: What is the postal code of [Cinema_name]?
T2-4: Where is the destination of [Cinema_name]?
T2-5: What is the postal address of [Cinema_name]?

SELECT ?streetValue ?postalCodeValue ?DestinationName

WHERE {

?Cinema prefix:name “[Cinema_name]”^^<xsd:string>.

?Cinema prefix:hasPostalAddress ?PostalAddress.

?PostalAddress prefix:street ?streetValue.

?PostalAddress prefix:postalCode ?postalCodeValue.

?PostalAddress prefix:isInDestination ?Destination.

?Destination prefix:name ?DestinationName. }

186

For the main class MovieShow which has no ‘name’ prop-
erty, we located the ‘hasEventContent’ property first and
took each of the other three associated properties (isInSite,
hasPrice, hasPeriod) to create one-constraint predictive
questions. Since the four properties are all object proper-
ties, their range classes can be zoomed in to expand more
associated properties, which results in more possible ques-
tions. Here, we only selected some of them, e.g.
Movie:name, Cinema:name, TicketPrice:priceValue, to
create reasonable predictive questions, for example:

T1-5: What is the name of the movie which is shown in
[Cinema_name]?

T1-6: What is the name of the movie which has the ticket
price [priveValue_value]?

T1-7: What is the name of the movie which is shown at
[startTime_value]?

T1-8: What is the name of the movie which is shown on
[startDate_value]?

T2-6: What is the cinema name which shows
[Movie_name]?

T2-7: What is the ticket price of [Movie_name]
T2-8: What is the show time of [Movie_name]?
T2-9: What is the show date of [Movie_name]?

Predictive questions and their query templates with more
constraints (e.g. two and three) can be generated as well
using the same method. For generating each n-constraint
question, n different properties need to be taken, in addi-
tion to the most frequently asked one which was located
first (e.g. name, hasEventContent).

After the generation of question patterns (i.e. predictive
questions) as well as the corresponding query templates, a
textual entailment engine is used to find out which predic-
tive question is entailed by a new question. Since the pre-
dictive questions and query templates contain unfilled
slots, simple question processing needs to be done to iden-
tify named entities from user questions. For example, since
the user question “Where can I see the movie 300?” is
deemed to entail the predictive question “T2-6”, we can
take the SPARQL query template of the selected question
to retrieve the answers to the user question. But it is neces-
sary first to identify the fact that “300” is a movie name
and fill in the slot in the query template with this value to
produce a complete query.

5. Evaluation

This section presents a small evaluation which assesses the
quality of the natural language predictive questions gener-
ated on the basis of the ontology. For the evaluation it was
not necessary to assess whether or not the answers re-
trieved by our QA system are correct. Instead we measured
to what extent our textual entailment engine was able to
select the correct predictive question and as a result the
correct SPARQL query template. The reason is that since
the restricted-domain QA systems usually take answers
from structured knowledge bases, the correct extraction of

an answer depends on the generation of the correct query
and not on the actual extraction process.

In this evaluation, we limited the scope of the generated
predictive questions to the sub-domain of “Movies &
Cinemas”. For all the classes (concepts) present in this
part of the ontology (shown in Figure 1), one-constraint
and two-constraint questions with the corresponding
SPARQL query templates were generated using the
method presented in Section 4. For the textual entailment
engine, we applied a bag-of-words method enhanced with
the information about the entities which occur in an input
user question.

The evaluation was based on 250 user questions. These
questions were randomly selected from a total of 4501
benchmark questions, and include various sub-domains of
the tourism domain, not only those referring to “Movies &
Cinemas”. Each of the user questions was marked manu-
ally by assigning to it a predictive question which is con-
sidered to be entailed by it from the machine-generated set.
Some of the questions did not refer to movies or cinemas
and for this reason they were marked as outside the
domain. For a number of questions within the domain, it
was impossible to find any predictive question which is
entailed by the user question due to the fact that the pre-
dictive questions cannot cover all user questions with one
or two constraints or the user questions contain three or
more constraints. These questions were marked as no
predictive question accordingly. The remaining questions
which belong to the question type T1 and T2 with one or
two constraints and are also related to movies and cinemas
should have a corresponding predictive question in our set
and are thus marked as to be resolved.

The entailment engine used in our experiment relies on two
threshold values to determine whether a question is outside
the domain or has no predictive questions in our set. After
conducting various experiments, it was determined that if
the entailment score is below 0.4, the question is deemed
outside the domain, whereas if the entailment score is be-
tween 0.4 and 0.5, there are no predictive questions for this
question. Table 1 presents a breakdown of the different
categories of user questions in the evaluation and the en-
tailment accuracy for each category.

As can be seen in the table, the results are rather low. An
analysis of the results revealed several explanations, espe-
cially for the questions for which a predictive question is
expected to be found (the To be resolved column). A first
source of errors is the simplicity and similarity of the gen-
erated predictive questions. Some predictive questions are
very similar which makes it difficult to differentiate be-
tween them using our entailment engine. For example, for
the user question “Who directed 300? ”, the three predic-
tive questions, “Who is the star of [Movie_name]? ”, “Who
is the writer of [Movie_name]? ”, and “Who is the director
of [Movie_name]? ”, obtained the same score due to the

187

fact that the entailment engine fails to identify a link be-
tween directed and director.

Table 1. Entailment accuracy for each category of user question

Number of the
user questions

Outside
the domain

No predictive
question

To be
resolved

Total 170 24 56

Correct 122 9 25
Percentage 71.76% 37.5% 44.64%

Another source of errors is due to the very different lengths
of the user questions and predictive questions. The predic-
tive questions are quite brief since they were produced by
the machine. On the other hand, the user questions pro-
duced by humans are longer and in some cases quite ver-
bose. For this reason, there are cases where the entailment
score is very low, resulting in the wrong classification of
the user questions as no predictive question or outside the
domain.

6. Discussion and Conclusion

This paper describes an automatic question pattern genera-
tion method for ontology-based QA, which is mainly based
on ontology parsing and question entailment. Using ontol-
ogy parsing, a set of question patterns can be produced
together with the corresponding query templates for an-
swer retrieval. Textual entailment is used to answer new
questions by finding out which predictive questions are
entailed by the new question, in this way also finding out
how to answer them. This approach is very appropriate for
ontology-based question answering in restricted domains
because not only the question patterns, but also the query
templates which in turn can be used to retrieve answers,
are able to be generated on the basis of a domain ontology.

The above approach still has some drawbacks. The first is
that the generated question patterns cannot cover all kinds
of user questions. Especially for a large domain ontology
which involves too many classes and properties, it is diffi-
cult to exhaust various combinations of properties and gen-
erate all possible question patterns. In this study, we only
focus on the ‘name’ property to create two types of ques-
tion patterns, T1 and T2. The second drawback is that
some of generated question patterns do not make sense.
For example, there are questions which ask for the name of
a cinema at a particular set of GPS coordinates. These
questions are theoretically possible, but a human would
never ask them, but this over-generation does not result in
a big problem.

The evaluation revealed that a large number of errors are
due to the simplicity of the method used to produce the
predictive questions. In light of this, it would be interesting
to generate more complicated predictive questions in fu-
ture, which are more similar to those produced by humans.
The evaluation also revealed the limitations of a bag-of-

words entailment method. Therefore, in future, we plan to
experiment with alternative entailment engines which can
better deal with the variability of language.

Acknowledgements

This work is supported by the EU-funded project
QALL-ME (FP6 IST-033860).

References

Atzeni, P., Basili, R., Hansen, D. H., Missier, P., Paggio,
P., Pazienza, M. T., and Zanzotto, F. M. 2004. Ontology-
based Question Answering in a Federation of University
Sites: the MOSES Case Study. In Proceedings of the Ninth
International Conference on Applications of Natural Lan-
guage to Information Systems, 413-420. Heidelberg, Ber-
lin: Springer.

Basili, R., Hansen, D. H., Paggio, P., Pazienza M. T., and
Zanzotto F. M. 2004. Ontological Resources and Question
Answering. In Proceedings of the Workshop on Pragmatics
of Question Answering held in conjunction with HLT-
NAACL 2004. Morristown, NJ: ACL.

Harabagiu, S., and Hickl, A. 2006. Methods for Using Tex-
tual Entailment in Open-Domain Question Answering. In
Proceedings of the 21st International Conference on Com-
putational Linguistics and the 44th Annual meeting of the
ACL, 905-912. Morristown, NJ: ACL.

Katz, B., Felshin, S., Yuret, D., Ibrahim, A., Lin, J., Mar-
ton, G., McFarland, A. J., and Temelkuran, B. 2002. Om-
nibase: Uniform Access to Heterogeneous Data for Ques-
tion Answering. In Proceeding of the Seventh International
Workshop on Applications of Natural Language to Infor-
mation Systems, 230-234. Heidelberg, Berlin: Springer.

Kouylekov, M., Negri, M., Magnini, B., and Coppola B.
2006. Towards Entailment-Based Question Answering:
ITC-irst at CLEF 2006. In Proceedings of Cross Language
Evaluation Forum, 526-536. Heidelberg, Berlin: Springer.

Lopez, V., Pasin, M., and Motta, E. 2005. AquaLog: An
Ontology-Portable Question Answering System for the
Semantic Web. In Proceedings of the Second European
Semantic Web Conference, 546-562. Heidelberg, Berlin:
Springer.

Popescu, A., Etzioni, O., and Kautz, H. 2003. Towards a
Theory of Natural Language Interfaces to Databases. In
Proceedings of the Eight International Conference on In-
telligent User Interfaces, 149-157. New York, NY: ACM.

Warren, D., and Pereira, F. 1982. An Efficient Easily Port-
able System for Interpreting Natural Language Queries.
Computational Linguistics 8(3-4): 110-122.

188

