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Abstract 

This paper presents an automatic question pattern generation 
method for ontology-based question answering with the use 
of textual entailment. In this method, a set of question pat-
terns, called predictive questions, which are predicted to be 
asked by users in a domain, were generated on the basis of a 
domain ontology. Their corresponding query templates, 
which can be used to extract answers to the predictive ques-
tions from a knowledge base, were generated as well. The 
process of producing these question patterns and query tem-
plates is described and discussed in the context of the 
“Movies & Cinemas” domain. An evaluation was carried 
out to assess the quality of the generated question patterns 
with the help of a textual entailment engine. 

1. Introduction   

The semantic web, which encodes some semantics of web-

resources in a machine-readable form, is regarded as the 

future in the evolution of the World Wide Web. It offers an 

opportunity to develop novel, sophisticated forms of 

Question Answering (QA), where ontologies play a crucial 

role (Lopez et al. 2005). The common feature of such 

ontology-based QA systems is that they require the repre-

sentation of both natural language user questions and in-

formation sources using formats compliant with a common 

ontology (Basili et al. 2004). Once unstructured informa-

tion sources are marked up semantically and transformed 

into structured knowledge bases, well-structured queries, 

often written in a certain standard query language (e.g. 

SQL, SPARQL, and RQL), are often used to retrieve data 

from underlying knowledge bases. In order to draw correct 

answers from such sources, a natural language question 

needs to be precisely translated into such a query. How-

ever, this is a difficult task involving complex semantic 

annotation and knowledge representation. In addition to 

this, language is complex and ambiguous, and the same 

question can be asked using various expressions, for ex-

ample, “Where can I see movie X?”, “Which cinema is 
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showing movie X?” and “What is the name of the cinema 

which is showing movie X?”. These “different” questions 

share the same query for data retrieval and obtain the same 

answers, and thus it is not worth processing each expres-

sion to produce the same query. To address this problem, 

textual entailment was proposed as a solution to determine 

whether different expressions entail the same meaning and 

thus can use the same retrieval procedure (Kouylekov et al. 

2006). 

 

In our EU-funded project QALL-ME1, which aims to 

establish a shared infrastructure for multilingual and mul-

timodal QA in the tourism domain, we proposed an 

ontology-based QA method which uses a set of predefined 

question patterns for answering new questions with the use 

of textual entailment. In this project, a domain ontology 

was designed to provide a common vocabulary for the se-

lected domain as well as a computerized specification of 

the meaning of terms used in the vocabulary. The unstruc-

tured tourism data taken from the web were semantically 

marked up using the ontology and converted into the triple-

based RDF format. On the basis of the ontology, a set of 

question patterns, called predictive questions, which are 

predicted to be asked by users in the domain, were gener-

ated automatically, along with their corresponding query 

templates. Following Harabagiu and Hickl (2006), if a user 

question entails a predictive question, the answers of the 

predictive question are expected to be some subset of the 

answers to the user question. Thus for an input user ques-

tion, we use textual entailment to discover the predictive 

question entailed by it, and then use the query template of 

the selected predictive question to produce a complete 

query for retrieving the answers to the user question. The 

main advantage of the method proposed is that we do not 

need to annotate the user questions which look different 

but entail the same meaning, and more precise queries can 

be created to retrieve correct answers without the need of 

deep question processing.  
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This paper focuses on the automatic generation of question 

patterns as well as their corresponding query templates on 

the basis of the domain ontology. An evaluation was car-

ried out to assess the quality of the generated question pat-

terns by using a textual entailment engine to find out the 

one entailed by a user question. The subsequent sections 

are organized as follows: Section 2 reviews some related 

question answering systems, Section 3 describes the do-

main ontology and the underlying ontological knowledge 

base, Section 4 describes the generation of predictive 

questions and their corresponding query templates, Section 

5 reports the evaluation and its results, and Section 6 pre-

sents the discussion and conclusion.  

2. Related Work 

In question answering, the issue of representing a natural 
language question as a structured format for data retrieval 
is not a trivial task. Work in this area can be traced back to 
the early database-based QA systems. Using linguistic 
processing, Chat-80 (Warren and Pereira 1982) transforms 
a natural language question into a ProLog query, whereas 
RECISE (Popescu et al. 2003) maps a question to an SQL 
query. In the open-domain QA system START (Katz et al. 
2002), a natural language question was translated into a 
database query in the form of <object property value>, 
where the value of the object’s property represents the ex-
pected answer to the question. For example, the question 
“Who directed Gone with the wind?” is represented as 
<‘imdb.movie’ ‘Gone with wind (1939)’ ‘DIRECTOR’>. 
 
The availability of domain ontologies makes possible to 
semantically annotate questions and transform them into an 
ontological representation. An early ontology-based ques-
tion analysis was investigated in the EU project MOSES 
(Atzeni et al. 2004). In this QA system, a natural language 
question is first represented as a Question Quasi-Logical 
(Q-QLF) form with syntactic analysis. Then, a domain 
ontology, which has been mapped to a general linguistic 
resource (e.g. EuroWordNet),  is used to map the Q-QLF 
form into an ontology-based concept-relation form for data 
retrieval from the semantically structured web contents. 
Another ontology-driven QA system, Aqualog (Lopez et 
al. 2005), makes use of linguistic tools (e.g. GATE) and 
resources (e.g. WordNet) to annotate the terms and rela-
tions in a natural language question and then translates the 
question into a set of <subject, predicate, object> triples. 
These intermediate triples are further processed to produce 
ontology-compliant logical queries for drawing the an-
swers from a knowledge base with ontology-compliant 
semantic markup. The third demonstration system which 
uses ontology-based full knowledge representation to an-
swer questions is the KSL Wine Agent2. This web service 
poses a structured query expressed in OWL DL to the 
knowledge base which contains structured content infor-
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mation, and uses a reasoner to check whether the content 
matches the query. A representative question which can be 
answered by the system is “What kind of wine should I 
serve with a meal whose main course is pasta with spicy 
red sauce?”  
 
A typical example of using predefined questions and tex-
tual entailment in QA is described in Harabagiu and Hickl 
(2006). First, the search engine of their QA system re-
turned a set of ranked passages in response to a user ques-
tion. To extract correct answers from these passages, a set 
of possible questions with the associated answers was gen-
erated automatically from the top-ranked passage. Using 
textual entailment, the predictive questions which were 
entailed by the user question were recognized and their 
answers were used as the correct answers to the user ques-
tion. Our work is similar to that of Harabagiu and Hickl 
(2006). However, in contrast to their work, (1) we gener-
ated question patterns and the associated query templates 
rather than concrete questions and the associated answers; 
(2) we generated predefined questions based on a domain 
ontology instead of the passages which were expected to 
contain the answers; and (3) our work was used for re-
stricted-domain QA whereas their work was for open-
domain QA.  

3. Ontology and Ontological Knowledge Base 

The ontology designed in our project aims at providing a 
conceptualized description of the tourism domain. It 
mainly covers tourism sites and tourism events in certain 
destinations (cities or towns). The ontology was encoded 
using the OWL DL language. A representative part of the 
ontology is the sub-domain of “Movies & Cinemas”, 
shown in Figure 1. It involves a type of tourism site, 
Cinema, and a type of tourism event, MovieShow, and fo-
cuses on the relationships between them.  
 
From the point of view of design, the top-level classes fall 
into three categories:  

• Main classes refer to the most important concepts in 
the tourism domain, e.g. Site, Event and EventContent. 

• Element classes refer to the elements of the main 
classes or the elements of other element classes, e.g. 
Room (including CinemaRoom, GuestRoom etc.), 
Facility (including SiteFacility and RoomFacility), 
PersonOrganization (including Star, Director etc.).  

• Attribute classes refer to the packages of a group of 
attributes of the main classes or element classes, e.g. 
Contact, Period, Price and Location (including 
GPSCoordinate, PostalAddress, DirectionLocation).  

From an application perspective, the instances of the main 
classes can exist independently whereas the instances of 
the element classes and attribute classes have to be at-
tached to the instances of the main classes or other element 
classes.  
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• The ellipse boxes represent classes and the rectangular represent literals; the top-level classes are highlighted in bold. 

• The solid lines represent object properties and datatype properties, and the dotted lines represent subClassOf.  

Figure 1. A part of the tourism ontology on the sub-domain of “Movies & Cinemas”  

 
To construct a knowledge base for providing potential an-
swers to user questions, we annotated the original tourism 
data obtained from the web using semantic markup derived 
from the designed OWL ontology. The tourism data were 
encoded in the RDF/XML format, which can be used to 
instantiate the ontology. The RDF/XML documents were 
persistently stored in the MySQL relational database as an 
RDF data model in the triple form of <subject, predicate, 
object>. To access the RDF-based knowledge base, RDF 
query languages, such as SPARQL and RQL, need to be 
used to retrieve specific contents from it for QA. This pro-
cedure can be viewed as an extension of pattern matching.  

4. Automatic Generation of Predictive 

Questions with Query Templates 

In this section, we focus on how to generate natural lan-
guage predictive questions which can be asked and an-
swered based on a domain ontology. Although this paper 
focuses on the sub-domain of “Movies & Cinemas”, the 

method can be generalized for the whole tourism domain. 
In addition, we use the SPARQL query language as the 
example to show how to generate corresponding query 
templates for retrieving answers to these predictive ques-
tions. Templates using other query languages can be gen-
erated in a similar way.  
 
Like the RDF model, SPARQL is also built on triple 
patterns and is written in the form of a subject, predicate 
and object, but must be terminated with a full stop. In a 
SPARQL triple pattern, any of the subject, predicate, and 
object values may be replaced by a variable that is denoted 
using a question mark (e.g. ?directorName). Variables are 
used to indicate data items of interest that will be requested 
by a question (for more details about SPARQL, please see 
http://www.w3.org/TR/rdf-sparql-query/) 
 
In the OWL ontology, a class usually has a list of associ-
ated properties which can be applied to the instances of the 
class. The value range of the property is usually specified 
by the global range restriction <rdfs: range>, but it may be 
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narrowed by the local range restriction <owl: 
allValuesFrom> with respect to a particular class. A class, 
an associated property, and the range of the property on the 
class can be written in the form of the RDF triple, i.e. a 3-
tuple of subject, predicate and object, where the subject 
represents the class, the predicate represents the property, 
and the object represents the value range of the property, 
for example, <MovieShow, isInSite, Cinema>. If the range 
is a union class containing more than one named classes, 
each of these classes is regarded as an object for creating a 
triple, e.g. <MovieShow, hasPeriod, DateTimePeriod> + 
<MovieShow, hasPeriod, DatePeriod>.  
 
Since the element and attribute classes need to be attached 
to the main classes, we started from the main classes to 
create predictive questions and query templates. For a main 
class, we used Jena3, a Semantic Framework for Java, to 
parse the OWL ontology and derived all the properties 
associated with it to write each in the triple form: <class, 
property, range>. These associated properties represent all 
the possible items which can be queried for the instances in 
the class. Among these properties, we first located the one 
which is the most frequently asked by users. By analyzing 
100 randomly selected user questions, we found that for 
most of the main classes (e.g. Movie and Cinema) the 
property is ‘name’. Thus, for the instances in such main 
classes, we create two types of queries focusing on the 
‘name’ property:  

• T1:  Query the ‘name’ property of a class instance using 
one or more of its other properties as the constraint(s). If 
only one property ‘xxx’ is taken, the one-constraint tem-
plate is defined as follows:  
− What is the name of the <class> which has the 

<xxx> [<xxx>_value]?  

• T2: Query a property ‘xxx’ (different to ‘name’) of a 
class instance using its ‘name’ property as the constraint.  
The T2 template is defined as follows:  
− What (or When, Where, How long) is the <xxx> of 

[<class>_name]?  

In the above templates, the angle-brackets slots represent 
the names of the classes or properties which will be filled 
while producing predictive questions. The square-brackets 
slots represent the name of the entities (e.g. movie genre, 
movie name) defined in the domain ontology, which will 
be filled with the real values in a user question while pro-
ducing its complete SPARQL query.   
 
If the property ‘xxx’ is a datatype property (e.g. genre), its 
range is a literal (e.g. string). For each type of query with 
one constraint, one natural language predictive question is 
produced. At the same time, its query template is generated 
based on the two triples: <class, name, string> and <class, 
xxx, range>. For example, if class=‘Movie’, xxx=‘genre’, 
the following two predictive questions are generated based 
on the above templates, along with the corresponding 
SPARQL query templates.  

                                                 
3 http://jena.sourceforge.net 

T1-1: What is the name of the movie which has the genre 
[genre_value]?  

SELECT     ?movieName          

WHERE { 

?Movie     prefix:name               ?movieName. 

?Movie     prefix:genre               “[genre_value]”^^<xsd:string>. } 

 

T2-1: What is the genre of [Movie_name]?  

SELECT    ?genreValue            

WHERE { 

?Movie        prefix:name            “[Movie_name]”^^<xsd:string>. 

?Movie        prefix:genre            ?genreValue.                               } 

 

If the property ‘xxx’ is an object property (e.g. 
hasPostalAddress), its range is a class (e.g. 
PostalAddress). Then the triples associated with this class 
are created subsequently using Jena. The procedure is re-
peated until the objects in all the triples are literals. Each of 
the triples will be used to create a SPARQL triple pattern. 
For example,  

<Cinema, name, string> 

<Cinema, hasPostalAddress, PostalAddress> → 

                <PostalAddress, street, string> 

                <PostalAddress, postalCode, string> 

                <PostalAddress, isInDestination, Destination> → 

                                                  <Destination, name, string> 
 
For the first type of queries, T1, three predictive questions 
can be produced, each of which uses one of the properties 
associated with the range class as the constraint.   

T1-2: What is the name of the cinema which is in 
[street_value]?  

T1-3: What is the name of the cinema which has the postal 
code [postalCode_value]?  

T1-4: What is the name of the cinema which is in 
[Destination_name]?  

 
For the second type of queries, T2, four predictive ques-
tions can be produced as follows. Each of the first three 
questions queries one of the properties associated with the 
range class, and the last one queries the overall range class 
(i.e. all of its associated properties).  

T2-2: What is the street of [Cinema_name]? 
T2-3: What is the postal code of [Cinema_name]?  
T2-4: Where is the destination of [Cinema_name]?  
T2-5: What is the postal address of [Cinema_name]?  

SELECT   ?streetValue   ?postalCodeValue   ?DestinationName   

WHERE { 

?Cinema              prefix:name    “[Cinema_name]”^^<xsd:string>. 

?Cinema              prefix:hasPostalAddress             ?PostalAddress. 

?PostalAddress   prefix:street                    ?streetValue. 

?PostalAddress   prefix:postalCode           ?postalCodeValue. 

?PostalAddress   prefix:isInDestination     ?Destination.   

?Destination       prefix:name                     ?DestinationName.      } 
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For the main class MovieShow which has no ‘name’ prop-
erty, we located the ‘hasEventContent’ property first and 
took each of the other three associated properties (isInSite, 
hasPrice, hasPeriod) to create one-constraint predictive 
questions. Since the four properties are all object proper-
ties, their range classes can be zoomed in to expand more 
associated properties, which results in more possible ques-
tions. Here, we only selected some of them, e.g. 
Movie:name, Cinema:name, TicketPrice:priceValue, to 
create reasonable predictive questions, for example:  

T1-5:  What is the name of the movie which is shown in 
[Cinema_name]? 

T1-6:  What is the name of the movie which has the ticket 
price [priveValue_value]? 

T1-7:  What is the name of the movie which is shown at 
[startTime_value]? 

T1-8:  What is the name of the movie which is shown on 
[startDate_value]? 

T2-6: What is the cinema name which shows 
[Movie_name]?  

T2-7:  What is the ticket price of [Movie_name] 
T2-8:  What is the show time of [Movie_name]? 
T2-9:  What is the show date of [Movie_name]? 
 
Predictive questions and their query templates with more 
constraints (e.g. two and three) can be generated as well 
using the same method. For generating each n-constraint 
question, n different properties need to be taken, in addi-
tion to the most frequently asked one which was located 
first (e.g. name, hasEventContent).  
 
After the generation of question patterns (i.e. predictive 
questions) as well as the corresponding query templates, a 
textual entailment engine is used to find out which predic-
tive question is entailed by a new question. Since the pre-
dictive questions and query templates contain unfilled 
slots, simple question processing needs to be done to iden-
tify named entities from user questions. For example, since 
the user question “Where can I see the movie 300?” is 
deemed to entail the predictive question “T2-6”, we can 
take the SPARQL query template of the selected question 
to retrieve the answers to the user question. But it is neces-
sary first to identify the fact that “300” is a movie name 
and fill in the slot in the query template with this value to 
produce a complete query.  

5. Evaluation 

This section presents a small evaluation which assesses the 
quality of the natural language predictive questions gener-
ated on the basis of the ontology. For the evaluation it was 
not necessary to assess whether or not the answers re-
trieved by our QA system are correct. Instead we measured 
to what extent our textual entailment engine was able to 
select the correct predictive question and as a result the 
correct SPARQL query template. The reason is that since 
the restricted-domain QA systems usually take answers 
from structured knowledge bases, the correct extraction of 

an answer depends on the generation of the correct query 
and not on the actual extraction process.  
 
In this evaluation, we limited the scope of the generated 
predictive questions to the sub-domain of “Movies & 
Cinemas”.  For all the classes (concepts) present in this 
part of the ontology (shown in Figure 1), one-constraint 
and two-constraint questions with the corresponding 
SPARQL query templates were generated using the 
method presented in Section 4.  For the textual entailment 
engine, we applied a bag-of-words method enhanced with 
the information about the entities which occur in an input 
user question.  
 
The evaluation was based on 250 user questions. These 
questions were randomly selected from a total of 4501 
benchmark questions, and include various sub-domains of 
the tourism domain, not only those referring to “Movies & 
Cinemas”. Each of the user questions was marked manu-
ally by assigning to it a predictive question which is con-
sidered to be entailed by it from the machine-generated set. 
Some of the questions did not refer to movies or cinemas 
and for this reason they were marked as outside the 
domain. For a number of questions within the domain, it 
was impossible to find any predictive question which is 
entailed by the user question due to the fact that the pre-
dictive questions cannot cover all user questions with one 
or two constraints or the user questions contain three or 
more constraints. These questions were marked as no 
predictive question accordingly. The remaining questions 
which belong to the question type T1 and T2 with one or 
two constraints and are also related to movies and cinemas 
should have a corresponding predictive question in our set 
and are thus marked as to be resolved. 
 
The entailment engine used in our experiment relies on two 
threshold values to determine whether a question is outside 
the domain or has no predictive questions in our set. After 
conducting various experiments, it was determined that if 
the entailment score is below 0.4, the question is deemed 
outside the domain, whereas if the entailment score is be-
tween 0.4 and 0.5, there are no predictive questions for this 
question. Table 1 presents a breakdown of the different 
categories of user questions in the evaluation and the en-
tailment accuracy for each category. 
 
As can be seen in the table, the results are rather low. An 
analysis of the results revealed several explanations, espe-
cially for the questions for which a predictive question is 
expected to be found (the To be resolved column). A first 
source of errors is the simplicity and similarity of the gen-
erated predictive questions. Some predictive questions are 
very similar which makes it difficult to differentiate be-
tween them using our entailment engine. For example, for 
the user question “Who directed 300? ”, the three predic-
tive questions, “Who is the star of [Movie_name]? ”, “Who 
is the writer of [Movie_name]? ”, and  “Who is the director 
of [Movie_name]? ”, obtained the same score due to the 
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fact that the entailment engine fails to identify a link be-
tween directed and director.  
 
Table 1.  Entailment accuracy for each category of user question 

Number of the 
user questions 

Outside 
the domain 

No predictive 
question 

To be 
resolved 

Total 170 24 56 

Correct 122 9 25 
Percentage 71.76% 37.5% 44.64% 

 
Another source of errors is due to the very different lengths 
of the user questions and predictive questions. The predic-
tive questions are quite brief since they were produced by 
the machine. On the other hand, the user questions pro-
duced by humans are longer and in some cases quite ver-
bose. For this reason, there are cases where the entailment 
score is very low, resulting in the wrong classification of 
the user questions as no predictive question or outside the 
domain.  

6. Discussion and Conclusion 

This paper describes an automatic question pattern genera-
tion method for ontology-based QA, which is mainly based 
on ontology parsing and question entailment. Using ontol-
ogy parsing, a set of question patterns can be produced 
together with the corresponding query templates for an-
swer retrieval. Textual entailment is used to answer new 
questions by finding out which predictive questions are 
entailed by the new question, in this way also finding out 
how to answer them. This approach is very appropriate for 
ontology-based question answering in restricted domains 
because not only the question patterns, but also the query 
templates which in turn can be used to retrieve answers, 
are able to be generated on the basis of a domain ontology.  
 
The above approach still has some drawbacks. The first is 
that the generated question patterns cannot cover all kinds 
of user questions. Especially for a large domain ontology 
which involves too many classes and properties, it is diffi-
cult to exhaust various combinations of properties and gen-
erate all possible question patterns. In this study, we only 
focus on the ‘name’ property to create two types of ques-
tion patterns, T1 and T2. The second drawback is that 
some of generated question patterns do not make sense. 
For example, there are questions which ask for the name of 
a cinema at a particular set of GPS coordinates. These 
questions are theoretically possible, but a human would 
never ask them, but this over-generation does not result in 
a big problem. 
 
The evaluation revealed that a large number of errors are 
due to the simplicity of the method used to produce the 
predictive questions. In light of this, it would be interesting 
to generate more complicated predictive questions in fu-
ture, which are more similar to those produced by humans. 
The evaluation also revealed the limitations of a bag-of-

words entailment method. Therefore, in future, we plan to 
experiment with alternative entailment engines which can 
better deal with the variability of language.  
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